Deformable Convolutional Networks

-- MSRA COCO Detection & Segmentation Challenge 2017 Entry

Jifeng Dai With Haozhi Qi*, Zheng Zhang, Bin Xiao, Han Hu, Bowen Cheng*, Yichen Wei Visual Computing Group Microsoft Research Asia (*interns at MSRA)

Outline

- Deformable ConvNets idea
- Deformable ConvNets for COCO challenge

Highlights

- Enabling effective modeling of spatial transformation in ConvNets
- No additional supervision for learning spatial transformation
- Significant accuracy improvements on sophisticated vision tasks

Code is available at https://github.com/msracver/Deformable-ConvNets

Modeling Spatial Transformations

• A long standing problem in computer vision Deformation: Scale:

Viewpoint variation:

Intra-class variation:

(Some examples are taken from Li Fei-fei's course CS223B, 2009-2010)

Traditional Approaches

• 1) To build training datasets with sufficient desired variations

• 2) To use transformation-invariant features and algorithms

Scale Invariant Feature Transform (SIFT) Deformable Part-based Model (DPM)

• Drawbacks: geometric transformations are assumed fixed and known, hand-crafted design of invariant features and algorithms

Spatial Transformations in CNNs

- Regular CNNs are inherently limited to model large unknown transformations
 - The limitation originates from the fixed geometric structures of CNN modules

regular Rol Pooling

Spatial Transformer Networks

- Learning a global, parametric transformation on feature maps
 - Prefixed transformation family, infeasible for complex vision tasks

Deformable Convolution

- Local, dense, non-parametric transformation
 - Learning to deform the sampling locations in the convolution/RoI Pooling modules

Deformable Convolution

Regular convolution

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n)$$

Deformable convolution

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n + \Delta \mathbf{p}_n)$$

where $\Delta \mathbf{p}_n$ is generated by a sibling branch of regular convolution

Deformable Rol Pooling

input feature map output roi feature map deformable RoI Pooling

Regular Rol pooling

$$\mathbf{y}(i,j) = \sum_{\mathbf{p}\in bin(i,j)} \mathbf{x}(\mathbf{p}_0 + \mathbf{p})/n_{ij}$$

Deformable Rol pooling

$$\mathbf{y}(i,j) = \sum_{\mathbf{p}\in bin(i,j)} \mathbf{x}(\mathbf{p}_0 + \mathbf{p} + \Delta \mathbf{p}_{ij}) / n_{ij}$$

where $\Delta \mathbf{p}_{ij}$ is generated by a sibling fc branch

Deformable ConvNets

- Same input & output as the plain versions
 - Regular convolution -> deformable convolution
 - Regular RoI pooling -> deformable RoI pooling
- End-to-end trainable without additional supervision

Sampling Locations of Deformable Convolution

(a) standard convolution

(b) deformable convolution

Part Offsets in Deformable Rol Pooling

Deformable ConvNets for Object Detection

• Regular object detectors

Deformable ConvNets for Object Detection

Deformable object detectors

: Deformable Convolution / Rol Pooling

XCeption -> Aligned XCeption

- Proper feature alignment in XCeption
 - Efficient: 9.5 GFLOPS on 224*224 img (ResNet-101, 7.6 GFLOPS)
 - Accurate: mAP 2.8% better than ResNet-101 using FPN on COCO (det, test-dev)

exit flow

Object Detection on COCO (Test-dev)

- MSRA 2017 Entry
 - ~3% mAP improvements by Deformable ConvNets
 - Best single model performance: 48.5%

Object Detection on COCO (Test-dev)

- Deformable ConvNets v.s. regular ConvNets
 - Noticeable improvements for varies baselines
 - Marginal parameter & computation overhead

Conclusion

- Deformable ConvNets for dense spatial modeling
 - Simple, efficient, deep, and end-to-end
 - No additional supervision
 - Feasible and effective on sophisticated vision tasks for the first time
- Our team

Haozhi Qi*

Zheng Zhang

Bin Xiao

Han Hu

Bowen Cheng*

Jifeng Dai