Panoptic Segmentation: Unifying
Semantic and Instance Segmentation
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e simple accuracy measure
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Object Detection/Seg

each object detected and
segmented separately Yy,

simple accuracy measure

instances indistinguishable
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 Popular datasets can be used
 We introduce simple, intuitive metric

* Drive novel algorithmic ideas



Popular datasets can be used
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Datasets Instance Semantic
Segmentation Segmentation
COCO* + +
ADE20k/Places + +
CityScapes + +
Mapillary Vistas + +

*COCO has overlaps (no depth order)
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Quality Evaluation

Ground Truth Prediction

Theorem: Matching is unique if overlapping threshold > 0.5 IoU and both ground
truth and prediction have no overlaps.

Proof sketch:

if then there is no other non overlapping

object that has IoU > 0.5.
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Quality Evaluation

Ground Truth Prediction
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Panoptic Segmentation Quality (PSQ)
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Panoptic Segmentation Quality (PSQ)
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CityScapes: 30 images were annotated independently twice.



Panoptic Segmentation Quality (PSQ)
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CityScapes: 30 images were annotated independently twice.

no confidence scores

S

human performance
can be measured

car 66.6% 87.5% 76.2%
person 61.8% 80.87% 76.4%
motorcycle 51.8% 77.8% 66.7%
pole 46.9% 70.3% 66.7%
road 98.0% 98.0% 100.0%
traffic sign 67.1% 79.5% 84.4%
average 62.6% 83.9% 73.43%

All Objects




Panoptic Segmentation Quality (PSQ)
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CityScapes: 30 images were annotated independently twice.

no confidence scores

S

human performance
can be measured

car 89.4% 91.3% 97.9%
person 82.0% 78.1% 94.1%
motorcycle 68.8% 79.4% 86.7%
pole 48.2% 70.3% 68.6%
road 98.0% 98.0% 100.0%
traffic sign 74.0% 79.5% 93.1%
average 68.7% 85.1% 80.1%

Objects > 322




Human Annotation Flaws

ki

|
A J 7\ /i] ¢
ﬂmlﬂ it ULM
i

L

Classification Flaws




Human Annotation Flaws

Segmentation Flaws
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Mask R-CNN + PSPNet Combination Heuristic

panoptic
. + prediction
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Mask R-CNN Non-overlapping Instances

Non-overlapping Instances Ground Truth



PSQ — Humans vs Computers

PSQ Seg Quality Det Quality

avg. avg. avg.
Humans 62.6% 83.9% 73.43%
Mask R-CNN + PSPNet 51.7% 81.0% 62.01%
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Det Quality
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PSQ — Humans vs Computers

Seg Quality Det Quality

avg. avg.
Humans 62.6% 83.9% 73.43%
Mask R-CNN + PSPNet 51.7% 81.0% 62.01%
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Semantic Segmentation Panoptic Segmentation

* per-pixel annotation
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Object Detection/Seg

* each object detected and
segmented separately Yy,

. simple accuracy measure

* instances indistinguishable

FCN 8s, DilationS,
DeepLab, PSPNet,
RefineNet, U-Net, etc. °

e “stuff’ is not segmented

Fast /er R-CNN, DeepMask,
SharpMask, Mask R-CNN,
FCIS, YOLO, RetinaNet,
FPN, etc.
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Panoptic Segmentation: Future Plans

« Panoptic Segmentation paper on ArXiv
« Efficient evaluation code on GitHub

* Possible competition(s)

Panoptic COCO Panoptic CityScapes



