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Panoptic Segmentation

• Popular datasets can be used

• We introduce simple, intuitive metric

• Drive novel algorithmic ideas
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Popular datasets can be used

For each pixel i predict semantic label l and instance id z

*COCO has overlaps (no depth order)

Datasets Instance
Segmentation

Semantic	
Segmentation

COCO* + +

ADE20k/Places + +

CityScapes + +

Mapillary Vistas + +
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Ground Truth Prediction
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Theorem: Matching is unique if overlapping threshold > 0.5 IoU and both ground 
truth and prediction have no overlaps.
Proof sketch:
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if

IoU > 0.5

then there is no other non overlapping 
object that has IoU > 0.5.
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class PSQ Seg Quality Det Quality
car 66.6% 87.5% 76.2%

person 61.8% 80.8% 76.4%
motorcycle 51.8% 77.8% 66.7%

pole 46.9% 70.3% 66.7%
road 98.0% 98.0% 100.0%

traffic sign 67.1% 79.5% 84.4%
average 62.6% 83.9% 73.43%

All Objects



Objects > 322

Panoptic Segmentation Quality (PSQ)

no confidence scores

human performance 
can be measured

class PSQ Seg Quality Det Quality
car 89.4% 91.3% 97.9%

person 82.0% 78.1% 94.1%
motorcycle 68.8% 79.4% 86.7%

pole 48.2% 70.3% 68.6%
road 98.0% 98.0% 100.0%

traffic sign 74.0% 79.5% 93.1%
average 68.7% 85.1% 80.1%
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CityScapes: 30 images were annotated independently twice.
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Mask R-CNN + PSPNet Combination Heuristic

instances

Mask 
R-CNN[1]

PSPNet[2]

semantic scores

panoptic
prediction

[1] He, K., Gkioxari, G., Dollár, P., & Girshick, R. Mask R-CNN. ICCV 2017. 
[2] Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. Pyramid scene parsing network. CVPR 2017.



Mask R-CNN Non-overlapping Instances

Mask R-CNN output Mask R-CNN filtered

Non-overlapping Instances Ground Truth
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Fast/er R-CNN, DeepMask,
SharpMask, Mask R-CNN,
FCIS, YOLO, RetinaNet, 
FPN, etc.

FCN 8s, Dilation8, 
DeepLab, PSPNet, 
RefineNet, U-Net, etc. ?
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Panoptic Segmentation: Future Plans

• Panoptic Segmentation paper on ArXiv

• Efficient evaluation code on GitHub

• Possible competition(s)

Panoptic COCO Panoptic CityScapes


