Panoptic Segmentation: Unifying Semantic and Instance Segmentation

Semantic Segmentation

Object Detection
Unifying Semantic and Instance Segmentation

Semantic Segmentation

Object Detection/Seg
Unifying Semantic and Instance Segmentation

Semantic Segmentation

- per-pixel annotation
- simple accuracy measure
- instances indistinguishable

Object Detection/Seg
Unifying Semantic and Instance Segmentation

Semantic Segmentation
- per-pixel annotation
- simple accuracy measure
- instances indistinguishable

Object Detection/Seg
- each object detected and segmented separately
- “stuff” is not segmented
Unifying Semantic and Instance Segmentation

Semantic Segmentation
- per-pixel annotation
- simple accuracy measure
- instances indistinguishable

Object Detection/Seg
- each object detected and segmented separately
- “stuff” is not segmented
Unifying Semantic and Instance Segmentation

Semantic Segmentation
- per-pixel annotation
- simple accuracy measure
- instances indistinguishable

Panoptic Segmentation

Object Detection/Seg
- each object detected and segmented separately
- “stuff” is not segmented
Outline

➢ Motivation

➢ Problem Definition

➢ Quality Evaluation

➢ Human Performance

➢ Humans vs Computers

➢ Perspectives
Panoptic Segmentation

For each pixel i predict semantic label l and instance id z
Panoptic Segmentation

For each pixel i predict semantic label l and instance id z

- no overlaps between segments
Panoptic Segmentation

For each pixel i predict semantic label l and instance id z

- no overlaps between segments

- Popular datasets can be used
- We introduce simple, intuitive metric
- Drive novel algorithmic ideas
Popular datasets can be used

For each pixel i predict semantic label l and instance id z

<table>
<thead>
<tr>
<th>Datasets</th>
<th>Instance Segmentation</th>
<th>Semantic Segmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>COCO*</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ADE20k/Places</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CityScapes</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mapillary Vistas</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

COCO has overlaps (no depth order)
Outline

- Motivation
- Problem Definition
- Quality Evaluation
- Human Performance
- Humans vs Computers
- Perspectives
Quality Evaluation

Ground Truth

Prediction
Quality Evaluation

Theorem: Matching is unique if overlapping threshold > 0.5 IoU and both ground truth and prediction have no overlaps.

Proof sketch:

If $\text{IoU} > 0.5$

then there is no other non overlapping object that has $\text{IoU} > 0.5$.
Quality Evaluation

Ground Truth

Prediction

\[TP_1 = \{ (\text{blue box}, \text{blue box}), (\text{red box}, \text{red box}) \} \]

\[FP_1 = \{ \text{yellow box} \} \]

\[FN_1 = \{ \text{gray box} \} \]
Quality Evaluation

TP₁ = \{(\text{blue}), (\text{orange})\}, (\text{orange}), (\text{orange}), (\text{orange})\}

FP₁ = \{\text{yellow}\}

FN₁ = \{\text{white}\}

\[
\text{PSQ}_1 = \frac{\text{IoU}(\text{blue}, \text{blue}) + \text{IoU}(\text{orange}, \text{orange})}{|TP₁| + |FP₁| + |FN₁|} \quad = \quad \frac{\sum_{(g,p)\in TP₁} \text{IoU}(g,p)}{|TP₁| + |FP₁| + |FN₁|}
\]
Quality Evaluation

Quality Evaluation

Ground Truth

Prediction

\[
PSQ_{l} = \frac{\sum_{(g,p) \in TP_1} \text{IoU}(g,p)}{|TP_1| + |FP_1| + |FN_1|} = \frac{\sum_{(g,p) \in TP_1} \text{IoU}(g,p)}{|TP_1|} \cdot \frac{|TP_1|}{|TP_1| + |FP_1| + |FN_1|}
\]

Segmentation Quality

Detection Quality
Outline

- Motivation
- Problem Definition
- Quality Evaluation
- Human Performance
- Humans vs Computers
- Perspectives
Panoptic Segmentation Quality (PSQ)

\[
PSQ_1 = \frac{\sum_{(g,p) \in TP_1} \text{IoU}(g,p)}{|TP_1| + |FP_1| + |FN_1|} = \frac{\sum_{(g,p) \in TP_1} \text{IoU}(g,p)}{|TP_1|} \cdot \frac{|TP_1|=1}{|TP_1| + |FP_1| + |FN_1|}
\]

Seg Quality

Det Quality
Panoptic Segmentation Quality (PSQ)

$\text{PSQ}_i = \frac{\sum_{(g,p) \in TP_1} \text{IoU}(g,p)}{|TP_1| + |FP_1| + |FN_1|}$

- **Seg Quality**
 \(\frac{\sum_{(g,p) \in TP_1} \text{IoU}(g,p)}{|TP_1|}\)

- **Det Quality**
 \(\frac{|TP_{i=1}|}{|TP_1| + |FP_1| + |FN_1|}\)

no confidence scores

human performance can be measured
Panoptic Segmentation Quality (PSQ)

\[PSQ_1 = \frac{\sum_{(g,p) \in TP_1} IoU(g,p)}{|TP_1| + |FP_1| + |FN_1|} = \frac{\sum_{(g,p) \in TP_1} IoU(g,p)}{|TP_1|} \cdot \frac{|TP_1|}{|TP_1| + |FP_1| + |FN_1|} \]

\(\sum_{(g,p) \in TP_1} IoU(g,p)\) \quad Seg Quality

\(\sum_{(g,p) \in TP_1} IoU(g,p)\) \quad Det Quality

CityScapes: 30 images were annotated independently twice.

no confidence scores
human performance
\(\Rightarrow\)
can be measured
Panoptic Segmentation Quality (PSQ)

\[PSQ_1 = \frac{\sum_{(g,p) \in TP_1} IoU(g,p)}{|TP_1| + |FP_1| + |FN_1|} \]

CityScapes: 30 images were annotated independently twice.

<table>
<thead>
<tr>
<th>class</th>
<th>PSQ</th>
<th>Seg Quality</th>
<th>Det Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>66.6%</td>
<td>87.5%</td>
<td>76.2%</td>
</tr>
<tr>
<td>person</td>
<td>61.8%</td>
<td>80.8%</td>
<td>76.4%</td>
</tr>
<tr>
<td>motorcycle</td>
<td>51.8%</td>
<td>77.8%</td>
<td>66.7%</td>
</tr>
<tr>
<td>pole</td>
<td>46.9%</td>
<td>70.3%</td>
<td>66.7%</td>
</tr>
<tr>
<td>road</td>
<td>98.0%</td>
<td>98.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>traffic sign</td>
<td>67.1%</td>
<td>79.5%</td>
<td>84.4%</td>
</tr>
<tr>
<td>average</td>
<td>62.6%</td>
<td>83.9%</td>
<td>73.43%</td>
</tr>
</tbody>
</table>

All Objects

no confidence scores
human performance can be measured
Panoptic Segmentation Quality (PSQ)

\[
PSQ_1 = \frac{\sum_{(g,p) \in TP_1} \text{IoU}(g,p)}{|TP_1| + |FP_1| + |FN_1|} = \frac{\sum_{(g,p) \in TP_1} \text{IoU}(g,p)}{|TP_1|} \times \frac{|TP_1|}{|TP_1| + |FP_1| + |FN_1|}
\]

Seg Quality
Det Quality

CityScapes: 30 images were annotated independently twice.

<table>
<thead>
<tr>
<th>class</th>
<th>PSQ</th>
<th>Seg Quality</th>
<th>Det Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>89.4%</td>
<td>91.3%</td>
<td>97.9%</td>
</tr>
<tr>
<td>person</td>
<td>82.0%</td>
<td>78.1%</td>
<td>94.1%</td>
</tr>
<tr>
<td>motorcycle</td>
<td>68.8%</td>
<td>79.4%</td>
<td>86.7%</td>
</tr>
<tr>
<td>pole</td>
<td>48.2%</td>
<td>70.3%</td>
<td>68.6%</td>
</tr>
<tr>
<td>road</td>
<td>98.0%</td>
<td>98.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>traffic sign</td>
<td>74.0%</td>
<td>79.5%</td>
<td>93.1%</td>
</tr>
<tr>
<td>average</td>
<td>68.7%</td>
<td>85.1%</td>
<td>80.1%</td>
</tr>
</tbody>
</table>

Objects > 32^2
Human Annotation Flaws

Classification Flaws
Human Annotation Flaws

Segmentation Flaws
Outline

- Motivation
- Problem Definition
- Quality Evaluation
- Human Performance
- Humans vs Computers
- Perspectives
Mask R-CNN + PSPNet Combination Heuristic

Mask R-CNN[1] → instances

PSPNet[2] → semantic scores

panoptic prediction

Mask R-CNN Non-overlapping Instances

Mask R-CNN output
Mask R-CNN filtered
Non-overlapping Instances
Ground Truth
<table>
<thead>
<tr>
<th></th>
<th>PSQ avg.</th>
<th>Seg Quality avg.</th>
<th>Det Quality avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humans</td>
<td>62.6%</td>
<td>83.9%</td>
<td>73.43%</td>
</tr>
<tr>
<td>Mask R-CNN + PSPNet</td>
<td>51.7%</td>
<td>81.0%</td>
<td>62.01%</td>
</tr>
</tbody>
</table>
PSQ – Humans vs Computers

<table>
<thead>
<tr>
<th></th>
<th>PSQ avg.</th>
<th>Seg Quality avg.</th>
<th>Det Quality avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humans</td>
<td>62.6%</td>
<td>83.9%</td>
<td>73.43%</td>
</tr>
<tr>
<td>Mask R-CNN + PSPNet</td>
<td>51.7%</td>
<td>81.0%</td>
<td>62.01%</td>
</tr>
</tbody>
</table>

![PSQ Distribution](image)

- **Humans**: Green
- **Heuristic combination of Mask R-CNN and PSPNet**: Blue
PSQ – Humans vs Computers

<table>
<thead>
<tr>
<th></th>
<th>PSQ avg.</th>
<th>Seg Quality avg.</th>
<th>Det Quality avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humans</td>
<td>62.6%</td>
<td>83.9%</td>
<td>73.43%</td>
</tr>
<tr>
<td>Mask R-CNN + PSPNet</td>
<td>51.7%</td>
<td>81.0%</td>
<td>62.01%</td>
</tr>
</tbody>
</table>

![IoU (semantic only)](image)

- **Humans**
- **Heuristic combination of Mask R-CNN and PSPNet**
Outline

➤ Motivation

➤ Problem Definition

➤ Quality Evaluation

➤ Human Performance

➤ Humans vs Computers

➤ Perspectives
Why solve it?

Semantic Segmentation
- per-pixel annotation
- simple accuracy measure
- instances indistinguishable

Panoptic Segmentation

Object Detection/Seg
- each object detected and segmented separately
- “stuff” is not segmented
Why solve it?

Semantic Segmentation
- per-pixel annotation
- simple accuracy measure
- instances indistinguishable

Panoptic Segmentation

Object Detection/Seg
- each object detected and segmented separately
- “stuff” is not segmented

FCN 8s, Dilation8, DeepLab, PSPNet, RefineNet, U-Net, etc.

Fast/er R-CNN, DeepMask, SharpMask, Mask R-CNN, FCIS, YOLO, RetinaNet, FPN, etc.
Why solve it?

Mask R-CNN → instances → semantic scores → panoptic prediction

PSPNet → semantic scores → panoptic prediction
Why solve it?
Why solve it?

- instances
- semantic scores
- FPN
- panoptic prediction
Panoptic Segmentation: Future Plans

- Panoptic Segmentation paper on ArXiv
- Efficient evaluation code on GitHub
- Possible competition(s)

Panoptic COCO

Panoptic CityScapes