Panoptic Segmentation: Unifying Semantic and Instance Segmentation

Alex Kirillov

Carsten Rother

Piotr Dollár

UNIVERSITÄT HEIDELBERG

Kaiming He

He Ross

FACEBOOK AI RESEARCH

Ross Girshick

Semantic Segmentation

Semantic Segmentation

Object Detection

Semantic Segmentation

Object Detection/Seg

Semantic Segmentation

- per-pixel annotation
- simple accuracy measure
- instances indistinguishable

Object Detection/Seg

Semantic Segmentation

- per-pixel annotation
- simple accuracy measure
- instances indistinguishable

Object Detection/Seg

- each object detected and segmented separately
- "stuff" is not segmented

Semantic Segmentation

- per-pixel annotation
- simple accuracy measure
- instances indistinguishable

Panoptic Segmentation

Object Detection/Seg

- each object detected and segmented separately
- "stuff" is not segmented

Outline

≻Motivation

\succ Problem Definition

≻Quality Evaluation

≻Human Performance

≻Humans vs Computers

> Perspectives

Panoptic Segmentation

For each pixel *i* predict semantic label *l* and instance id z

Panoptic Segmentation

For each pixel *i* predict semantic label *l* and instance id z

 \succ no overlaps between segments

Panoptic Segmentation

For each pixel *i* predict semantic label l and instance id z> no overlaps between segments

- Popular datasets can be used
- We introduce simple, intuitive metric
- Drive novel algorithmic ideas

Popular datasets can be used

For each pixel i predict semantic label l and instance id z

Datasets	Instance Segmentation	Semantic Segmentation	
COCO*	+	+	
ADE20k/Places	+	+	
CityScapes	+	+	
Mapillary Vistas	+	+	

*COCO has overlaps (no depth order)

Outline

≻Motivation

- ≻Problem Definition
- ≻Quality Evaluation
- ≻Human Performance
- ≻Humans vs Computers
- ➢Perspectives

Ground Truth

Prediction

Ground Truth

Prediction

Theorem: Matching is unique if overlapping threshold > 0.5 IoU and both ground truth and prediction have no overlaps.

Proof sketch:

then there is no other non overlapping object that has IoU > 0.5.

Outline

≻Motivation

- ≻Problem Definition
- ≻Quality Evaluation
- ≻Human Performance
- ≻Humans vs Computers
- ➢Perspectives

CityScapes: 30 images were annotated independently twice.

CityScapes: 30 images were annotated independently twice.

class	PSQ	Seg Quality	Det Quality
car	66.6%	87.5%	76.2%
person	61.8%	80.8%	76.4%
motorcycle	51.8%	77.8%	66.7%
pole	46.9%	70.3%	66.7%
road	98.0%	98.0%	100.0%
traffic sign	67.1%	79.5%	84.4%
average	62.6%	83.9%	73.43%
All Objects			

CityScapes: 30 images were annotated independently twice.

class	\mathbf{PSQ}	Seg Quality	Det Quality
car	89.4%	91.3%	97.9%
person	82.0%	78.1%	94.1%
motorcycle	68.8%	79.4%	86.7%
pole	48.2%	70.3%	68.6%
road	98.0%	98.0%	100.0%
traffic sign	74.0%	79.5%	93.1%
average	68.7%	85.1%	80.1%

Objects $> 32^2$

Human Annotation Flaws

Classification Flaws

Human Annotation Flaws

Segmentation Flaws

Outline

≻Motivation

- ≻Problem Definition
- ≻Quality Evaluation
- ≻Human Performance
- >Humans vs Computers
- > Perspectives

Mask R-CNN + PSPNet Combination Heuristic

He, K., Gkioxari, G., Dollár, P., & Girshick, R. Mask R-CNN. ICCV 2017.
Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. Pyramid scene parsing network. CVPR 2017.

Mask R-CNN Non-overlapping Instances

Mask R-CNN output

Mask R-CNN filtered

Non-overlapping Instances

Ground Truth

PSQ - Humans vs Computers

	PSQ avg.	Seg Quality avg.	Det Quality avg.
Humans	62.6%	83.9%	73.43%
${\rm Mask}\;{\rm R-CNN}+{\rm PSPNet}$	51.7%	81.0%	62.01%

PSQ – Humans vs Computers

	PSQ avg.	Seg Quality avg.	Det Quality avg.
Humans	62.6%	83.9%	73.43%
Mask R-CNN + PSPNet	51.7%	81.0%	62.01%

Humans

Heuristic combination of Mask R-CNN and PSPNet

PSQ - Humans vs Computers

	PSQ avg.	Seg Quality avg.	Det Quality avg.
Humans	62.6%	83.9%	73.43%
Mask R-CNN + PSPNet	51.7%	81.0%	62.01%

Humans

Heuristic combination of Mask R-CNN and PSPNet

Outline

≻Motivation

- \geq Problem Definition
- ≻Quality Evaluation
- ≻Human Performance
- \succ Humans vs Computers
- \geq Perspectives

SharpMask, Mask R-CNN,

FCIS, YOLO, RetinaNet,

FPN, etc.

FCN 8s, Dilation8, DeepLab, PSPNet, RefineNet, U-Net, etc.

Panoptic Segmentation: Future Plans

- Panoptic Segmentation paper on ArXiv
- Efficient evaluation code on GitHub
- Possible competition(s)

Panoptic CityScapes

Panoptic COCO