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Outline

• Top-Down method
• Person detection

• Pose estimation

• Inference
• Box Proposal Rescoring

• OKS-NMS

• AP of our submission
• 72.0 (test-dev)

• 71.4 (test-challenge)



Person Detection

• Re-implement FPN + Mask-
RCNN
• Backbone: ResNet-50

• Data: COCO only

• Top 20 boxes

• Performance
• COCO keypoint validation set

• Box AP (person) 52.1

• Box AR (person) 61.3

Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[J]. arXiv preprint arXiv:1612.03144, 2016.
He K, Gkioxari G, Dollár P, et al. Mask r-cnn[J]. arXiv preprint arXiv:1703.06870, 2017.



Pose Estimation Network

• Stacked Hourglass (v1) 8 stacks
• Input size: 256x256

• Supervision: Gaussian with std 1

• Only backpropagate the loss of annotated keypoints

Newell A, Yang K, Deng J. Stacked hourglass networks for human pose estimation[C]//European Conference on Computer Vision. Springer International 
Publishing, 2016: 483-499.



Can we make the pose 
network better?



Explore new architecture

• Hourglass is good, but is it the best?

• Can we design more effective and efficient architecture?

Method AP (validation, ground truth box)

Hourglass 8 stacks 73.4

Inception ResNet V2* 69.4

ResNet-269* 69.7

*These two networks have same stride with hourglass



Explore new architecture

• We use automatic neural 
network design approach 
BlockQNN to generates optimal 
model on keypoints task

• We search the best model on 
MPII dataset and transfer it to 
coco challenge. 

• It costs 5 days to complete the 
searching process with only 32 
GPUs.

Zhong Z, Yan J, Liu C L. Practical Network Blocks Design with Q-Learning[J]. arXiv preprint arXiv:1708.05552, 2017.



Design Network Blocks by Q-learning

Network Error Rate on CIFAR10 Error Rate on CIFAR100

VGG 7.25%

ResNet 6.61%

DenseNet 3.74% 19.25%

Network Search from 
Google

3.65%

Our method 3.60% 18.64%

Accuracy of Q-Learning in Exploration and Exploitation Comparison  with state-of-the-art methods on CIFAR-10 and CIFAR-100

Z. Zhong, J. Yan, and C. Liu “Practical Network Blocks Desgin with Q-Learning,” arXiv: 1808.5552, 2017



Explore new architecture

• Due to time limited, we only verify the result of hourglass 2 
stacks and the generated network

• The generated network has less number of parameter

• We evaluate them on validation set with ground truth box

Method AP (validation) Parameter Number

Hourglass 2 stacks 70.1 19M

The generated network 70.5 17M



Box Candidates Rescoring

• Traditional method
• Sort box candidates by box 

score

• Select top k boxes as the 
result

• Our method
• Sort box candidates by the

product of box score and 
keypoint score

• Select top k boxes as the 
result



Box Candidates Rescoring

• Comparison among different rescoring criterion

method AP (validation)

Box score 70.3

Keypoint score 56.1

Rescoring 71.5

Box score Rescoring



OKS-NMS

• Object Keypoint Similarity (OKS)

• Can be seen as “IoU” in keypoint detection to perform NMS

• OKS-NMS fails to suppress proposals with high IoU

• Combine IoU-NMS and OKS-NMS: 
• Apply 0.6 IoU-NMS first, then perform 0.5 OKS-NMS (best practice)

Papandreou G, Zhu T, Kanazawa N, et al. Towards Accurate Multi-person Pose Estimation in the Wild[J]. arXiv preprint arXiv:1701.01779, 2017.



Data Selection

False annotations in COCO dataset



Data Selection

• We statistic the joint 
distribution of keypoint 
similarity(KS) (between box 
center and keypoint center) 
and keypoint number of an 
instance

• We only keep the data right 
of the line (0.45,1) –
(0.65,17)

𝑘𝑠 c𝑏𝑜𝑥, c𝑘𝑝𝑠 = 𝑒
−||𝑐𝑏𝑜𝑥−𝑐𝑘𝑝𝑠||2

2

2∗𝑎𝑟𝑒𝑎𝑏𝑜𝑥



External data

• We use the AI Challenge Keypoint 
Dataset(AICKD) for joint training

1. Train a hourglass 8 stacks with 
COCO only data

2. Use the model above to select 
hard examples in AICKD

3. Joint train with COCO data and 
hard examples of AICKD

• We only backpropagate the loss of 
common annotations with COCO for 
AICKD data

AICKD annotation
COCO annotation

https://challenger.ai/competition/keypoint/subject


Experiment Results

Method AP (validation set)

Hourglass 8 stacks naïve 70.3

++ data selection 70.8

++ proposal rescoring 71.5

++ OKS-NMS 71.7

++ external data 73.0

++ ground truth box 75.5

Final submission AP (test-dev / test-challenge)

Ours (single model, COCO + external data) 72.0 / 71.4

GRMI (COCO + external data) 68.5 / NA

Papandreou G, Zhu T, Kanazawa N, et al. Towards Accurate Multi-person Pose Estimation in the Wild[J]. arXiv preprint arXiv:1701.01779, 2017.



Results Visualization



What we learned?

• For performance improvement of top-down methods, single 
person pose estimation module is much more important 
than detection module.

• A direct simple CNN regression model can solve complicated 
pose estimation problems in COCO dataset, including 
heavily occlusion, large variance and crowding cases.

• Hourglass shows great performance for single pose 
estimation task , but it is not the only choice. We expect 
better results from automatic designed networks in the 
future.
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