A Unified Architecture for Instance and Semantic Segmentation

<u>Alexander Kirillov</u>

Kaiming He

Ross Girshick

Piotr Dollár

Object Detection vs Semantic Segmentation

Object Detection

Semantic Segmentation

Object Detection vs Semantic Segmentation

 $Object \ Detection/Seg$

Semantic Segmentation

 $Object \ Detection/Seg$

Semantic Segmentation

 $Object \ Detection/Seg$

Semantic Segmentation

classification net

 $Object \ Detection/Seg$

classification net

Semantic Segmentation

dilated net

 $Object \ Detection/Seg$

classification net

Semantic Segmentation

dilated net

 $Object \ Detection/Seg$

classification net

Semantic Segmentation

decoder-encoder net

dilated net

 $\begin{array}{l} \operatorname{ResNet152}\ [1]\ / \\ \operatorname{ResNeXt152}\ [2] \end{array}$

He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition. CVPR 2016.
Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. Aggregated residual transformations for deep neural networks. CVPR 2017.

Feature Pyramid Network (FPN) [3]

He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition. CVPR 2016.
Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. Aggregated residual transformations for deep neural networks. CVPR 2017.
Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. Feature pyramid networks for object detection. CVPR 2017.

He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition. CVPR 2016.
Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. Aggregated residual transformations for deep neural networks. CVPR 2017.
Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. Feature pyramid networks for object detection. CVPR 2017.

Feature Pyramid Network (FPN) [3]

He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition. CVPR 2016.
Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. Aggregated residual transformations for deep neural networks. CVPR 2017.
Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. Feature pyramid networks for object detection. CVPR 2017.

Mask R-CNN[4]

Feature Pyramid Network (FPN) [3]

He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition. CVPR 2016.
Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. Aggregated residual transformations for deep neural networks. CVPR 2017.
Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. Feature pyramid networks for object detection. CVPR 2017.
He, K., Gkioxari, G., Dollár, P., & Girshick, R. Mask R-CNN. ICCV 2017.

3

image

 $\frac{1}{32}$

 $\frac{1}{16}$

 $\frac{1}{8}$

 $\frac{1}{4}$

He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition. CVPR 2016.
Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. Aggregated residual transformations for deep neural networks. CVPR 2017.
Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. Feature pyramid networks for object detection. CVPR 2017.
He, K., Gkioxari, G., Dollár, P., & Girshick, R. Mask R-CNN. ICCV 2017.

 ${\rm ResNeXt152}$

ResNeXt152-dilation (stride 8)

ResNeXt152-dilation (stride 8)

1x

1x

2x

3x

4x

Memory

0x

ResNeXt-FPN Training Details

Data augmentation:

Scaling: 0.5x - 2.0x

Crop: $0.9x - 1.0x \pmod{800x800}$

Color augmentation [1]

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. SSD: Single shot multibox detector. ECCV 2016.
Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. Aggregated residual transformations for deep neural networks. CVPR 2017.

ResNeXt-FPN Training Details

Data augmentation:

Scaling: 0.5x - 2.0x

Crop: $0.9x - 1.0x \pmod{800x800}$

Color augmentation [1]

Train stats:

- training time: 27 hours (8 P100 GPUs)
- per GPU memory usage: 14.5GB
- batch size: $16 (2 \times 8 \text{ GPU})$
- pretrained on ImageNet-5k [2]

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. SSD: Single shot multibox detector. ECCV 2016.
Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. Aggregated residual transformations for deep neural networks. CVPR 2017.

• no test time augmentation

• no test time augmentation

• no test time augmentation

- no test time augmentation
- test time augmentation:
 - flip, multi-scale

IoU per Category

IoU per Category

IoU per Category

ResNeXt-FPN Take-Away

• Winning entry in COCO stuff 2017 competition

Team name	mIoU	fIoU	mACC	pACC	mIoUS	floUS	mACCS	pACCS
ResNeXt152-FPN	28.80%	55.70%	42.30%	69.20%	56.20%	68.70%	70.30%	80.50%
G-RMI	26.60%	51.90%	40.40%	65.40%	52.40%	64.70%	67.80%	77.40%
Oxford Active Vision Lab	24.20%	50.60%	34.80%	66.00%	50.30%	63.60%	62.20%	77.40%
Baseline Deeplab VGG-16	20.20%	47.60%	28.20%	64.70%	45.90%	60.10%	57.00%	75.10%
Vllab	12.40%	38.90%	17.50%	57.70%	34.90%	50.70%	44.20%	67.90%

ResNeXt-FPN Take-Away

• Winning entry in COCO stuff 2017 competition

Team name	mIoU	fIoU	mACC	pACC	mIoUS	floUS	mACCS	pACCS
ResNeXt152-FPN	28.80%	55.70%	42.30%	69.20%	56.20%	68.70%	70.30%	80.50%
G-RMI	26.60%	51.90%	40.40%	65.40%	52.40%	64.70%	67.80%	77.40%
Oxford Active Vision Lab	24.20%	50.60%	34.80%	66.00%	50.30%	63.60%	62.20%	77.40%
Baseline Deeplab VGG-16	20.20%	47.60%	28.20%	64.70%	45.90%	60.10%	57.00%	75.10%
Vllab	12.40%	38.90%	17.50%	57.70%	34.90%	50.70%	44.20%	67.90%

• FPN backbone has good [accuracy]/[memory and speed] trade-off

ResNeXt-FPN Take-Away

• FPN – unified backbone architecture for object recognition

and key points

semantic segmentation