DensePose Challenge Intro:
Joint COCO and Mapillary Recognition Workshop
September 9th, ECCV 2018 Sunday
Rıza Alp Güler, INRIA/CentraleSupélec

Video Source: https://www.youtube.com/watch?v=Dhkd_bAwwMc
Human-body analysis: from coarse to fine

Image Classification

Input Image

Is there a person in this image?

Yes? No?

Image Classification
Human-body analysis: from coarse to fine

Image Classification

Person Detection

Localize persons in the image.
Human-body analysis: from coarse to fine

Input Image

Segment person instances

Image Classification
Person Detection
Person Segmentation
Human-body analysis: from coarse to fine

Input Image

Part Segmentation

Segment semantically meaningful body parts.

Image Classification Person Detection Person Segmentation Part Segmentation
Human-body analysis: from coarse to fine

- Image Classification
- Person Detection
- Person Segmentation
- Part Segmentation
- Pose Estimation

Input Image → Pose Estimation
Localize joints of the persons in the images.
Human-body analysis: from coarse to fine

Image Classification
- Is there a person in this image?
 - Yes?
 - No?

Object Detection
- Localize persons in the image.

Pose Estimation
- Localize joints of the persons in the images.

DensePose (our work)
- Find correspondence between all pixels and a 3D model.

Part Segmentation
- Segment semantically meaningful body parts.

Input Image

Find correspondence between all pixels and a 3D model.
SMPL Model:

SMPLify:

SMPL Parameter Regression:

Kanazawa et al. “End-to-end Recovery of Human Shape and Pose” CVPR 2018
Pavlakos et al. “Learning to Estimate 3D Human Pose and Shape from a Single Color Image” CVPR 2018
Dense Correspondences to SMPL model

Unite the People Dataset (UP):
"Unite the people: Closing the loop between 3d and 2d human representations.” Lassner, et al. (CVPR 2017)

SURREAL Dataset :
"Learning from synthetic humans” Varol, et al. (CVPR 2017)

DensePose-COCO Dataset :
"DensePose: Dense Human Pose Estimation” Guler, et al. (CVPR 2018)
Mesh Charting

Video Source: https://www.youtube.com/watch?v=Dhkd_bAwwMc
Image-to-Surface correspondence
Image-to-Surface correspondence
Image-to-Surface annotations
Quantization replaced by part assignment.

Surface Correspondence

TASK 1: Part Segmentation
- sampled points
- rendered images for the specific part

TASK 2: Marking Correspondences
- segmented parts
- input image
- rendered images for the specific part

Annotation pipeline -
Annotation pipeline-II

input image → segmented parts → sampled points → rendered images for the specific part

Surface Correspondence
DensePose-COCO Dataset
densepose.org
DensePose-COCO Dataset
densepose.org
densepose.org

DensePose-COCO dataset

DensePose-PoseTrack dataset

Posetrack Dataset:
https://github.com/facebookresearch/DensePose
Annotator Performance

Rendered Image (SURREAL) Sampled Points Collected Points Geodesic distances
Annotator Performance

Average annotator error
Annotator Performance

![Graph showing the ratio of correct points across different body parts with varying geodesic error.]
Evaluation

Geodesic Point Similarity (GPS) for instance based frameworks:

\[
GPS = \frac{1}{|P|} \sum_{p_i \in P} \exp \left(\frac{-d(\hat{p}_i, p_i)^2}{2\kappa(p_i)^2} \right)
\]

- \(P\) → set of ground truth points annotated for a person
- \(d(\hat{p}_i, p_i)\) → Geodesic distance on the surface
- \(\kappa(p_i)\) → per-part normalization factor.

Measure AP between GPS = 0.5 - 0.95
Baseline: DensePose-RCNN
DensePose-RCNN Architecture

Video Source: https://www.youtube.com/watch?v=Dhkd_bAwwMc
Baseline: DensePose-RCNN

DensePose-RCNN Model Zoo:

see: github.com/facebookresearch/DensePose

<table>
<thead>
<tr>
<th>Model</th>
<th>AP</th>
<th>AP50</th>
<th>AP75</th>
<th>APm</th>
<th>API</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet 50 + FPN</td>
<td>0.4892</td>
<td>0.8490</td>
<td>0.5078</td>
<td>0.4384</td>
<td>0.5059</td>
</tr>
<tr>
<td>ResNet 50 + FPN (mask, keypoints)</td>
<td>0.5075</td>
<td>0.8606</td>
<td>0.5373</td>
<td>0.4356</td>
<td>0.5265</td>
</tr>
<tr>
<td>ResNet101 + FPN</td>
<td>0.5147</td>
<td>0.8660</td>
<td>0.5601</td>
<td>0.4716</td>
<td>0.5291</td>
</tr>
<tr>
<td>ResNext101+ FPN</td>
<td>0.5554</td>
<td>0.8908</td>
<td>0.6080</td>
<td>0.5067</td>
<td>0.5676</td>
</tr>
</tbody>
</table>
DensePose-RCNN Results
DensePose-RCNN Results
DensePose-RCNN Results
Quantization replaced by part assignment.

DensePose-RCNN Results Visualization

Video Source: https://www.youtube.com/watch?v=Dhkd_bAwwMc
Quantization replaced by part assignment.

DensePose-RCNN Results Visualization

Textures from SURREAL dataset:
"Learning from synthetic humans"
Varol, Gül, et al. CVPR 2017
Winning entry

Parsing R-CNN

Team members:

Lu Yang (BUPT Priv Lab); Qing Song (BUPT Priv Lab); Zhihui Wang (BUPT Priv Lab)
Winner

<table>
<thead>
<tr>
<th>Model</th>
<th>AP</th>
<th>AP50</th>
<th>AP75</th>
<th>APm</th>
<th>API</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet 50 + FPN</td>
<td>0.4892</td>
<td>0.8490</td>
<td>0.5078</td>
<td>0.4384</td>
<td>0.5059</td>
</tr>
<tr>
<td>ResNet 50 + FPN (mask, keypoints)</td>
<td>0.5075</td>
<td>0.8606</td>
<td>0.5373</td>
<td>0.4356</td>
<td>0.5265</td>
</tr>
<tr>
<td>ResNet101 + FPN</td>
<td>0.5147</td>
<td>0.8660</td>
<td>0.5601</td>
<td>0.4716</td>
<td>0.5291</td>
</tr>
<tr>
<td>ResNext101+ FPN</td>
<td>0.5554</td>
<td>0.8908</td>
<td>0.6080</td>
<td>0.5067</td>
<td>0.5676</td>
</tr>
<tr>
<td>Sound of silent</td>
<td>0.57 (4)</td>
<td>0.87 (5)</td>
<td>0.66 (2)</td>
<td>0.48 (5)</td>
<td>0.61 (3)</td>
</tr>
<tr>
<td>ML_Lab</td>
<td>0.57 (3)</td>
<td>0.89 (3)</td>
<td>0.64 (4)</td>
<td>0.51 (3)</td>
<td>0.59 (4)</td>
</tr>
<tr>
<td>PlumSix</td>
<td>0.58 (2)</td>
<td>0.89 (2)</td>
<td>0.66 (3)</td>
<td>0.50 (4)</td>
<td>0.61 (2)</td>
</tr>
<tr>
<td>BUPT-PRIV</td>
<td>0.64</td>
<td>0.92</td>
<td>0.75</td>
<td>0.57</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Winner!
DensePose Team

Rıza Alp Güler Natalia Neverova Vasil Khalidov Iasonas Kokkinos