DensePose Challenge Intro:

Joint COCO and Mapillary Recognition Workshop

September 9th, ECCV 2018 Sunday

Rıza Alp Güler, INRIA/CentraleSupélec

Video Source: https://www.youtube.com/watch?v=Dhkd_bAwwMc

Rıza Alp Güler

Natalia Neverova

Vasil Khalidov

lasonas Kokkinos

Input Image

Image Classification

Is there a person in this image? Yes? No?

Image Classification

Input Image

Person Detection

Localize persons in the image.

Image Classification

Input Image

Person Segmentation

Segment person instances

Image Classification

Person Segmentation

Input Image

Part Segmentation

Segment semantically meaningful body parts.

Image Classification

Person Segmentation

Part Segmentation

Input Image

Pose Estimation

Localize joints of the persons in the images.

Image Classification

Person Segmentation

Part Segmentation

Pose Estimation

Input Image

Dense Pose Estimation

Find correspondence between all pixels and a 3D model.

Image Classification

Person Segmentation

Part Segmentation

Pose Estimation

DensePose

SMPLify:

Loper et al. "SMPL: A skinned multi-person linear model." ACM Transactions on Graphics (TOG) 34.6 (2015): 248.

Bogo et al. "Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image" ECCV 2016

SMPL Parameter Regression:

Kanazawa et al. "End-to-end Recovery of Human Shape and Pose" CVPR 2018

Pavlakos et al. "Learning to Estimate 3D Human Pose and Shape from a Single Color Image" CVPR 2018

Dense Correspondences to SMPL model

UP (model fitting)

SURREAL (synthetic)

DensePose (manual)

Unite the People Dataset (UP):

"Unite the people: Closing the loop between 3d and 2d human representations." Lassner, et al. (CVPR 2017) SURREAL Dataset :

"Learning from synthetic humans" Varol, et al. (CVPR 2017)

DensePose-COCO Dataset :

"DensePose: Dense Human Pose Estimation" Guler, et al. (CVPR 2018)

Mesh Charting

simple parts

Video Source: https://www.youtube.com/watch?v=Dhkd_bAwwMc

Image-to-Surface correspondence

Image-to-Surface correspondence

Image-to-Surface annotations

Annotation pipeline-I

Surface Correspondence

Annotation pipeline-II

Surface Correspondence

DensePose-COCO Dataset

U coordinates

V coordinates

DensePose-COCO Dataset

U coordinates

V coordinates

Image

densepose.org

DensePose-COCO dataset

DensePose-PoseTrack dataset

Posetrack Dataset:

Andriluka, Mykhaylo, et al. "Posetrack: A benchmark for human pose estimation and tracking." CVPR 2018.

https://github.com/facebookresearch/Densepose

Patch Indices

U coordinates

V coordinates

Points on the image

Points on the SMPL model

Annotator Performance

Rendered Image (SURREAL)

Geodesic distances

Annotator Performance

Average annotator error

Annotator Performance

Evaluation

Geodesic Point Similarity (GPS) for instance based frameworks:

$$GPS = \frac{1}{|P|} \sum_{p_i \in P} \exp\left(\frac{-d(\hat{p}_i, p_i)^2}{2\kappa(p_i)^2}\right)$$

 $P \longrightarrow$ set of ground truth points annotated for a person $d(\hat{p}_i, p_i) \longrightarrow$ Geodesic distance on the surface $\kappa(p_i) \longrightarrow$ per-part normalization factor.

Measure AP between GPS = 0.5 - 0.95

Geodesic distances on the template

Baseline: DensePose-RCNN

DensePose-RCNN Architecture

He, Kaiming, et al. "Mask R-CNN." (ICCV 2017)

Video Source: https://www.youtube.com/watch?v=Dhkd_bAwwMc

Baseline: DensePose-RCNN

DensePose-RCNN Model Zoo:

see: github.com/facebookresearch/DensePose

Model	AP	AP50	AP75	APm	API
ResNet 50 + FPN	0.4892	0.8490	0.5078	0.4384	0.5059
ResNet 50 + FPN (mask, keypoints)	0.5075	0.8606	0.5373	0.4356	0.5265
ResNet101 + FPN	0.5147	0.8660	0.5601	0.4716	0.5291
ResNext101+ FPN	0.5554	0.8908	0.6080	0.5067	0.5676

DensePose-RCNN Results

DensePose-RCNN Results

DensePose-RCNN Results

Video Source: https://www.youtube.com/watch?v=Dhkd_bAwwMc

Textures trom SURREAL dataset: "Learning from synthetic humans" Varol, Gül, et al. CVPR 2017

Parsing R-CNN

Team members:

Lu Yang (BUPT Priv Lab); Qing Song (BUPT Priv Lab); Zhihui Wang (BUPT Priv Lab)

Winner

Model	AP	AP50	AP75	APm	ΑΡΙ	
ResNet 50 + FPN	0.4892	0.8490	0.5078	0.4384	0.5059	
ResNet 50 + FPN (mask, keypoints)	0.5075	0.8606	0.5373	0.4356	0.5265	Baselines
ResNet101 + FPN	0.5147	0.8660	0.5601	0.4716	0.5291	
ResNext101+ FPN	0.5554	0.8908	0.6080	0.5067	0.5676	
Sound of silent	0.57 (4)	0.87 (5)	0.66 (2)	0.48 (5)	0.61 (3)	
ML_Lab	0.57 (3)	0.89 (3)	0.64 (4)	0.51 (3)	0.59 (4)	
PlumSix	0.58 (2)	0.89 (2)	0.66 (3)	0.50 (4)	0.61 (2)	Challenge entries
BUPT-PRIV	0.64	0.92	0.75	0.57	0.67	

Winner!

Rıza Alp Güler

Natalia Neverova

Vasil Khalidov

lasonas Kokkinos

