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Results

Comparison of our approach with 2017 winning entries on COCO test-dev.
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Overview

1. We developed a hybrid cascading and branching pipeline for
detection and segmentation.
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Pipeline
p =

A hybrid architecture with interleaved task branching and cascade.

Mask feature

Proposals Regressed box J
> RPN \
Backbone . Stagel | Stagel Stage2 _  Stage2
cls. + reg. mask cls. + reg. mask
. Semantic ‘ ‘

head Semantic feature




Pipeline

Baseline; Cascade R-CNN
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Pipeline

Baseline; Cascade R-CNN

Proposals

> RPN

Stage 1 R Stage 2
cls. + reg. Regressed box cls. + reg.

Backbone

Problem: designed for detection, not segmentation



Pipeline

Baseline; Cascade R-CNN + Mask R-CNN

Proposals
> RPN > Stage 1 R Stage 2
mask mask
Backbone J Stagel _  Stage2
cls. + reg. Regressed box cls. + reg.




Pipeline

Baseline; Cascade R-CNN + Mask R-CNN

Proposals
R RPN R Stage 1 Stage 2
mask mask
Backbone R Stage 1 R Stage 2
cls. + reg. Regressed box cls. + reg.

Problem: mismatch of training and testing pipeline



Pipeline

Problem: mismatch of training and testing pipeline

training

testing

Proposals
R RPN R Stage 1 R Stage 2
mask mask
2
Backbone R Stage 1 R Stage
cls. + reg. Regressed box cls. + reg.
Proposals
> RPN Stage 1 Stage 2
mask mask
2
Backbone R Stage 1 R Stage
cls. + reg. Regressed box cls. + reg.
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Task cascade: ordinal bbox prediction and mask prediction

Proposals Regressed box

> RPN \

Stage 1 . Stage 1 Stage 2 | Stage 2
cls. + reg. mask cls. + reg. mask

A
A

Backbone




Pipeline
p o

Task cascade: ordinal bbox prediction and mask prediction

Proposals Regressed box
> RPN \
Backbone . Stagel J| Stagel Stage2 |  Stage2
cls. + reg. mask cls. + reg. mask

Problem: no connection between mask branches of different stages
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Interleaved execution: box cascade & mask cascade

Mask feature

Proposals Regressed box )

> RPN \

Stage 1 - Stage 1 Stage 2 R Stage 2
cls. + reg. mask cls. + reg. mask
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Pipeline
p ==

Interleaved execution: box cascade & mask cascade

Mask feature

Proposals Regressed box J
> RPN \
1 1 2 t 2
Backbone R Stage R Stage Stage R Stage
cls. + reg. mask cls. + reg. mask

Problem: contextual information is not much explored



Pipeline %
Hybrid branching: additional semantic segmentation branch

Mask feature

Proposals Regressed box J
> RPN \
Backbone . Stagel | Stagel Stage2 _  Stage2
cls. + reg. mask cls. + reg. mask
. Semantic ‘ ‘

head Semantic feature




Overview T

2. We proposed a feature guided anchoring scheme to improve the
average recall (AR) of RPN by 10 points. (submitted to AAAI 2019)
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Guided Anchoring

* From sliding window to sparse, non-uniform distribution
* From predefined shapes to learnable, arbitrary shapes
* Refine features based on anchor shapes



Guided Anchoring
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Guided Anchoring

: —— anchors ——
I ’ Gunde_d —> prediction
‘ anchoring IS ‘J —
, —> anchors —
Guided — prediction
anchoring > g —_—
Guided — anchors — o
_ — prediction
anchoring I ! —
Guided — anchors —— L
_ — prediction
anchoring . ! —

feature pyramid

GA-RPN w/ FPN



Guided Anchoring
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Guided Anchoring
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Guided Anchoring
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Guided Anchoring

RPN




Guided Anchoring
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Overview

3. We designed a new backbone FishNet. (accepted to NIPS 2018)
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FishNet % @

Motivation

* The basic principles for designing CNN for region and pixel level tasks are diverging from
the principles for image classification.

* Unify the advantages of networks designed for region and pixel level tasks in obtaining deep
features with high-resolution.

Image classification Region and pixel level tasks

Segmentation, pose estimation, detection ...



FishNet 28

Motivation

* Traditional consecutive down-sampling will prevent the very shallow layers to be directly
connected till the end, which may exacerbate the vanishing gradient problem.

* Features from varying depths could be used for refining each other.

Features in Features in Featuresin ~ _ Residual Concat
the tail part the body part the head part Blocks

224x224 | 112x112 | 56x56 | 2828 | 14x14 | 7x7 | 14x14 2828 | 56x56 | 2828  14x14  7x7 | 1d
[mmmmmmmm e — - Tailpart == =====—===————-» e———— Body Part = === - -», : —————— Head part === --»
I

FishNet: A Versatile Backbone for Image, Region, and Pixel Level Prediction, NIPS 2(518, accepted.



FishNet
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FishNet

MS COCO va/-2017 detection and instance segmentation results.

Instance Segmentation| Object Detection
Backbone AP*/AP%/AP;, /AP | APY/APL/APE,/APS
ResNet-50 [ 3] 34.5/15.6/37.1/52.1 | 38.6/22.2/41.5/50.8
ResNet-501 34.77/18.5/37.4/147.77 | 38.7/22.3/42.0/51.2
ResNeXt-50 (32x4d)" | 35.7/19.1/38.5/48.5 | 40.0/23.1/43.0/52.8
FishNet-188 37.0/19.8/40.2/50.3 | 41.5/24.1/44.9/55.0
vs. ResNet-50" +2.3/+1.3/4+2.8/+2.6 | +2.8/+1.8/+2.9/+3.8
vs. ResNeXt-507 +1.3/+0.7/+1.7/+1.8 | +1.5/+1.0/+1.9/+2.2



Experiments =

Training/Testing details

1. Training scales
* short edge: random sampled from 400 ~ 1400
* |ong edge: 1600
2. Test scales
* (600, 900), (800, 1200), (1000, 1500), (1200, 1800), (1400, 2100)
3. Pipeline
* Joint training
* Finetune with GA-RPN proposals
* Test with GA-RPN proposals
4. Resources
« 32 Tesla V100 GPUs (16GB) for 3 days



Experiments

Backbones

* SENet-154 ~0.8 points higher
e ResNeXt101 (64*4d) -
* ResNeXtl01 (32*8d)
R DPN-107 — comparable
* FishNet




Experiments

Other tricks

 w/ SoftNMS

*  w/o OHEM

* w/o classwise balance sampling
* w/0 voting for bbox or mask



Experiments
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Experiments
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Experiments
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Visualization
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Visualization
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Visualization
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EXxperience

1. What can bring large gains?

Fundamental improvements of pipelines and structures
* Mask R-CNN
* FPN
* (Cascade R-CNN
* (Synchronized) BN
* Deformable ConvNet



EXxperience

2. What may not?

Improvements of specific modules
* Precise Rol Pooling

* DetNet

* GCN

* Fitness NMS

Extra marginal components

* ASPP

* Spatial attention

* Additional R-CNN/PSPNet



EXxperience

2. What may not?

Increasing model complexity can eat most of the gains
Combination of ideas Is not trivial

May not be universal or robust

Time 1s limited or wrong implementation



EXxperience 2 @

3. The annotation quality may limit the performance.

ground truth segmentation results



EXxperience

3. The annotation quality may limit the performance.

ground truth segmentation results



Experience red

4. Engineering tricks matter.

Reproducing detection pipelines is not very easy.

* Some component works well in one DL framework, but it takes us long time
to reimplement and debug it with another framework.

* |t takes only 2 hours to implement an algorithm, but it may take 1 week to
reproduce the performance reported In the paper.



Experience i%?
P #%E

4. Engineering tricks matter.

There are traps everywhere.

* A wrong implementation of flip testing even decreases the mAP, the cause
proves to be the rounding operation of bbox coordinates.
* Asingle pixel shift can lead to 1 point drop.



Experience =l

4. Engineering tricks matter.

7\
A4

Q

reproduce existing methods performance tuning explore new ideas
(20 days) (30 days) (30 days)

We could do better if we already have a good codebase.



One more thing



Codebase

* Comprehensive

(V) RPN (V) Fast/Faster R-CNN
(V) Mask R-CNN (V) FPN

@ Cascade R-CNN @ RetinaNet

C] More -

* High performance
(V] Better performance
V] Optimized memory consumption
@ Faster speed

* Handy to develop GitHub: mmdet
@] Written with PyTorch

@] Modular design



Thank you!



