

2018 Panoptic Challenge

European Conference on Computer Vision

Joint COCO and Mapillary Recognition Challenge Workshop

Sunday, September 9th, ECCV 2018

Alexander Kirillov, Facebook AI Research

COCO Panoptic Dataset

2018 Panoptic Segmentation Dataset

- \succ For each pixel *i* predict semantic label *l* and instance id *z*
- ➤ no overlaps between segments by design

2018 Panoptic Segmentation Dataset

- ➤ COCO annotations have overlaps
- \succ Most overlaps can be resolved automatically
- $\succ \sim \! 25 \mathrm{k}$ overlaps require manual resolution

2018 Panoptic Segmentation Dataset

Instructions:

In each row click on the image with better objects layout.

Task:

Ø

2018 Panoptic Segmentation Dataset

train: 118k, val: 5k, test-dev: 20k, test-challenge: 20k
80 things categories, 53 stuff categories

Panoptic Quality Measure

Ground Truth

Prediction

PQ Computation:

- Step 1: Matching
- Step 2: Calculation

Panoptic Quality (PQ): Matching

Ground Truth

Prediction

Theorem: For panoptic segmentation problem each ground truth segment can have at most one corresponding predicted segment with IoU greater than 0.5 **Proof sketch:**

then there is no other non overlapping object that has IoU > 0.5.

Panoptic Quality (PQ): Matching

Ground Truth

Prediction

$$TP = \{(\bigcirc, \bigcirc), (\bigcirc, \bigcirc) \}$$
$$FP = \{ \bigcirc \}$$
$$FN = \{ \bigcirc \}$$

Panoptic Quality (PQ):Calculation

Ground Truth

Prediction

$$\mathrm{PQ} = \frac{\sum_{(p,g)\in TP} \mathrm{IoU}(p,g)}{|TP| + \frac{1}{2}|FP| + \frac{1}{2}|FN|}$$

Panoptic Quality (PQ):Calculation

COCO Panoptic Metrics

Average Panoptic Metrics:	
PQ % Panoptic Quality (primary challenge metric)	
SQ % Segmentation Quality component of PQ	
RQ % Recognition Quality component of PQ	
Panoptic Metrics for Things Categories:	
PQ Th % PQ for things categories only	
SQ Th % SQ for things categories only	
RQ Th % RQ for over things categories only	
Panoptic Metrics for Stuff Categories:	
PQ St % PQ for stuff categories only	
SQ St % SQ for stuff categories only	
RQ St % RQ for stuff categories only	

COCO images were annotated independently twice

COCO images were annotated independently twice

	PQ	SQ	RQ
All	53.5	82.6	63.9
Things	57.8	81.4	69.7
Stuff	47.1	84.3	55.2

➤ Crowd sourced annotations are very noisy

5000 COCO images were annotated independently twice

	PQ	SQ	RQ		PQ	SQ	RQ
All	53.5	82.6	63.9	Small	25.2	62.1	32.8
Things	57.8	81.4	69.7	Medium	53.5	81.7	64.6
Stuff	47.1	84.3	55.2	Large	69.6	87.5	78.3

➤ Crowd sourced annotations are very noisy

 \succ Annotations are highly inconsistent for small objects

Annotations Consistency < Human Performance

Annotations Consistency < Human Performance

real GT = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]noisy annotator 1 = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]noisy annotator 2 = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]

Annotations Consistency < Human Performance

real GT = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]noisy annotator 1 = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]noisy annotator 2 = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]

Annotations Consistency < Human Performance

- real GT = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]noisy annotator 1 = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]noisy annotator 2 = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]

Accuracy(real GT, ideal annotator) = ?

 \succ 11 teams joined the competition

- \succ 11 teams joined the competition
- ▶ 4 teams achieved better performance than the baseline (RN50 Mask R-CNN + RN50 FPN-FCN)

- \succ 11 teams joined the competition
- ▶ 4 teams achieved better performance than the baseline (RN50 Mask R-CNN + RN50 FPN-FCN)

Summary of Findings

2018 COCO Panoptic Challenge Take-aways

➢ All submission above the baseline combined the outputs of two separate networks for stuff and things

Summary of Findings

2018 COCO Panoptic Challenge Take-aways

- ➢ All submission above the baseline combined the outputs of two separate networks for stuff and things
- Best submission showed better PQ for things categories than the human consistency experiment

	PQ	SQ	RQ	PQ^{Th}	SQ^{Th}	RQ^{Th}	PQ^{St}	$SQ^{St} \\$	RQ St
Human Consistency	53.5	82.6	63.9	57.8	81.4	69.7	47.1	84.3	55.2
Megvii (Face++)	53.8	83.4	63.6	62.8	85.7	73.1	40.2	80	49.2

Summary of Findings

2018 COCO Panoptic Challenge Take-aways

- ➢ All submission above the baseline combined the outputs of two separate networks for stuff and things
- Best submission showed better PQ for things categories than the human consistency experiment

Things	PQ^{Th}	SQ^{Th}	RQ^{Th}	all TP	all FP	all FN	Precision	Recall
Human Consistency	57.8	81.4	69.7	24890	8860	9628	72.6%	69.5%
Megvii (Face++)	62.8	85.7	73.1	24205	4929	10313	81.1%	67.1%

- ➢ The result suggests ability to learn models with low noise level from large-scale noisy data
- \succ Accuracy of the test set ground truth needs to be improved in the future

Image

Prediction Megvii (Face++)

Image

Prediction Megvii (Face++)

Image

Prediction Megvii (Face++)

Image

Prediction Megvii (Face++)

> dog Vice Andrew Constant of the second secon

Image

Prediction Megvii (Face++)

30

- \succ 11 teams joined the competition
- ▶ 4 teams achieved better performance than the baseline (RN50 Mask R-CNN + RN50 FPN-FCN)

- \succ 11 teams joined the competition
- ▶ 4 teams achieved better performance than the baseline (RN50 Mask R-CNN + RN50 FPN-FCN)

*External segmentation datasets were used

Team	Position
Megvii (Face++)	1^{st}
Caribbean	$2^{ m nd}$
PKU_360	$3^{ m rd}$