
COCO Challenge 2018 Panoptic Segmentation Task

Team name: PKU_360

Team members: Yibo Yang, Xia Li, Hongyang Li, Tiancheng Shen, Zhouchen Lin, Jian Dong, Jiashi Feng, Shuicheng Yan

Task Analysis

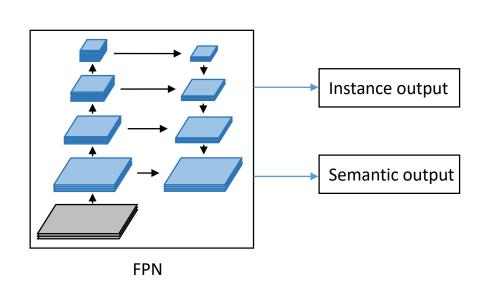
Occlusion between instances

Occlusion between instance and semantic pixels

Task Analysis

- Occlusion between instances
 - Non overlapping detector, such as [1]
 - Reasoning to solve occlusion, such as by post processing or learnable NMS.
- Occlusion between instance and semantic pixels

Task Analysis



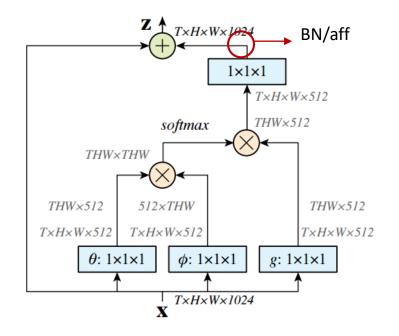
- Occlusion between instances
 - Non overlapping detector, such as [1]
 - Reasoning to solve occlusion, such as by post processing or learnable NMS.
- Occlusion between instance and semantic pixels
 - Comparison between semantic confidence and objectness score.
 - Thing segments override stuff segments.

• Train instance and semantic segmentation separately

Instance and semantic segmentation share the same Conv body to extract feature.

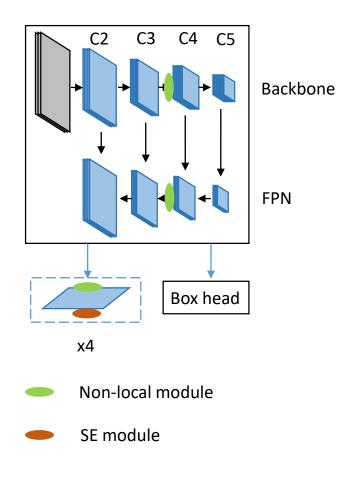
Training methods

• Multi-task in an e2e manner


- Based on Mask RCNN
- Backbone
 - ResNeXt-152 trained on ImageNet 5k provided by Facebook.
- Best single model performance
 - 43.5 mask mAP on test-dev (used for our panoptic results)
- Methods
 - Non-local module^[1]
 - Squeeze and excitation module^[2]
 - Bottom-up path aggregation^[3] in an alternate updating manner^[4]
 - Synchronized BN, multi-scale training/testing, etc.
- [1] Wang, et al. Non-local neural networks, CVPR 2018
- [2] Hu, et al. Squeeze and excitation networks, CVPR 2018
- [3] Liu, et al. Path aggregation network for instance segmentation, CVPR 2018
- [4] Yang, et al. Convolutional neural networks with alternately updated clique, CVPR 2018

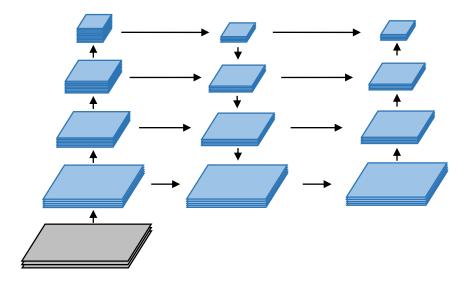
- Training details
- 300k iterations
- Single image on each GPU
- Initial Ir: 0.01

- Non-local module
 - On backbone (Res4)
 - On FPN (the same level with Res4)
 - On mask head (before each conv of the 4-convs head)
 - Synchronized BN or affine operation with scale parameter initialized as 0

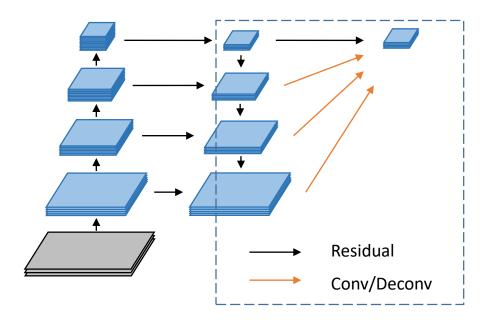


Non-local module

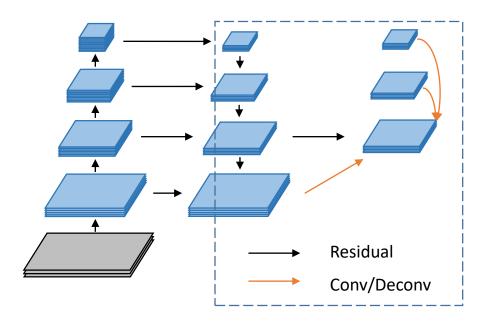
- On backbone (Res4)
- On FPN (the same level with Res4)
- On mask head (before each conv of the 4-convs head)
- Synchronized BN or affine operation with scale parameter initialized as 0
- Squeeze-and-excitation module
- On mask head (after each conv of the 4-convs head)

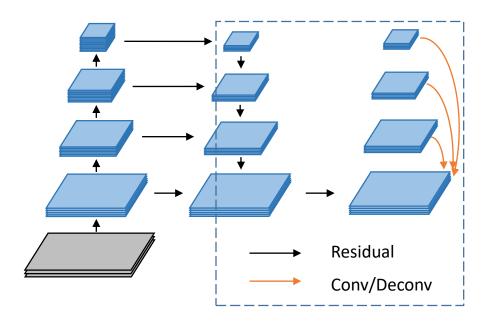


Bottom-up path aggregation

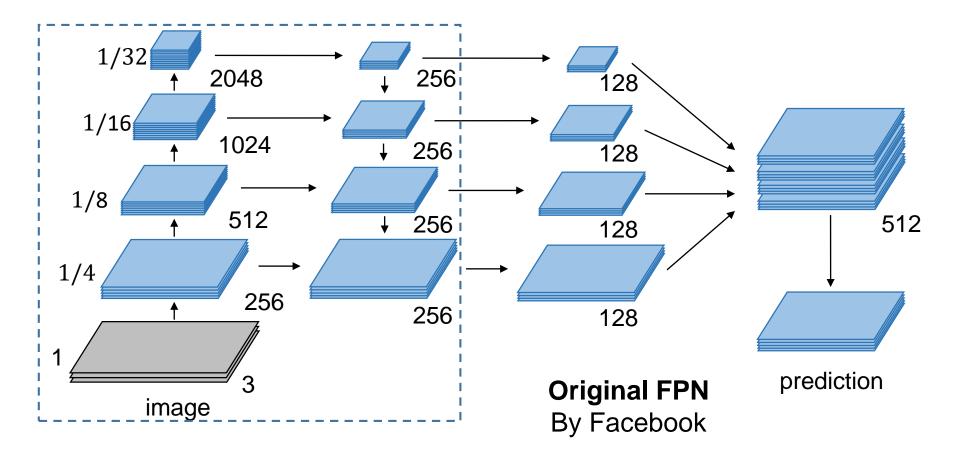

• Original


Bottom-up path aggregation


Bottom-up path aggregation

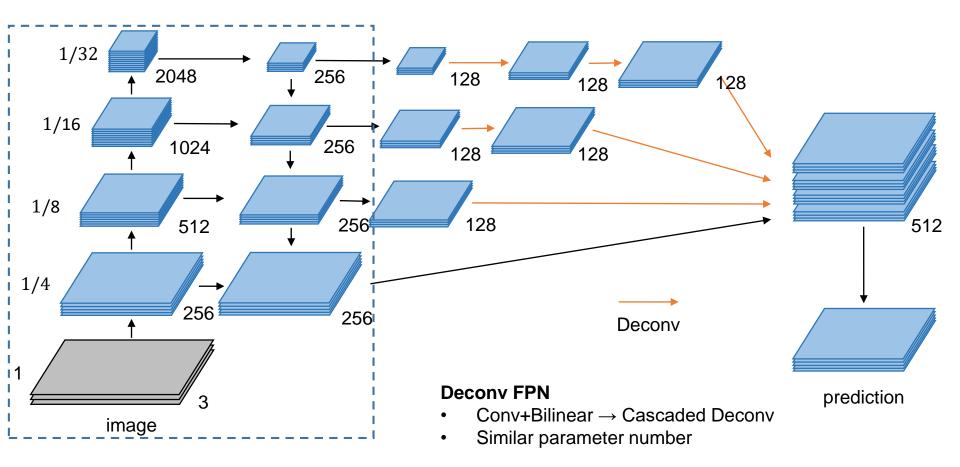

Bottom-up path aggregation

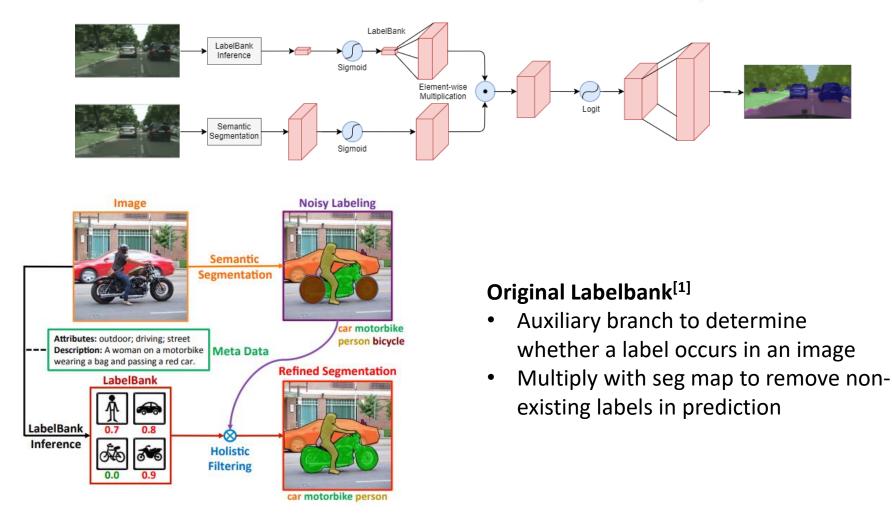
Bottom-up path aggregation

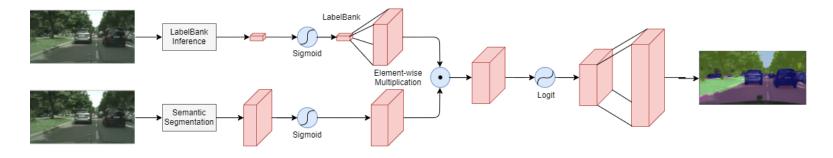


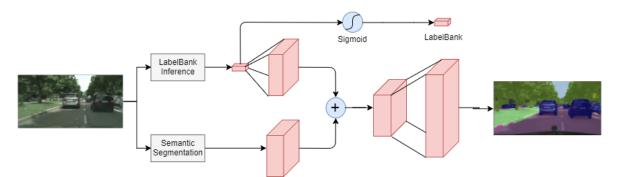
Ablation experiments (40000 iterations, no test time augmentation, on val set)

	Box map	Mask map
R-50 baseline	33.66	30.76
+ 4SE mask head	33.83	30.96
+ nonlocal backbone + 4SE mask head	33.83	31.09
+ nonlocal backbone + 4SE mask head + 4nonlocal mask head	33.99	31.15
+ nonlocal backbone + nonlocal FPN	34.02	31.08
+ nonlocal backbone + nonlocal FPN + path aggregation (original)	34.11	31.28
+ nonlocal backbone + nonlocal FPN + path aggregation (ours)	34.60	31.75









Modified Labelbank (LB)

- Share backbone of two branches
- Simplify the 'Merge' operation

Comparative Experiment

- Backbone: SE-ResNet50
- Init Learning Rate: 1e-2
- Iteration: 20k
- Optimizer: Adam
- Input size: 512
- Dataset: COCO-stuff 10k

	mloU	floU	mAcc	рАсс
Original FPN	31.19	48.34	42.71	62.54
Deconv FPN	31.52	49.23	42.74	63.64
FPN + LB	33.12	50.1	45.01	64.74
Deeplab ^[1]	32.37	50.73	43.34	65.2
PSPNet ^[2]	32.58	50.41	43.49	64.93
FPANet ^[3]	32.14	49.23	43.91	63.69

[1] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation,

arXiv preprint arXiv:1706.05587, 2017.

[2] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network, CVPR 2017: 2881-2890.

[3] Li H, Xiong P, An J, et al. Pyramid Attention Network for Semantic Segmentation, arXiv preprint arXiv:1805.10180, 2018.

Final Submit

- Backbone: ResNeXt152
- Init Learning Rate:
 - Backbone: 1e-3
 - Seg Head: 1e-2
- Normalization:
 - Backbone: freeze
 - Seg Head: no BN
- Iteration: 60k
- Optimizer: Adam
- Dataset: COCO- Panoptic (Stuff Parts)

	Original FPN	Deconv FPN
Input size	800	732
mloU	49.54	49.39
floU	67.53	67.2
mAcc	62.10	62.38
рАсс	79.51	79.29

Average the two models for panoptic calculation

Baseline method (provided by panoptic cocoapi)

- Filter out instances (objectness score below a threshold)
- NMS-like procedure (remove pixels which have been assigned to a segment with higher score, accept the non-overlapping portion if sufficient fraction remains)
- Filter our semantic segments (area below a threshold)
- Thing override stuff

Baseline method (provided by panoptic cocoapi)

- Filter out instances (objectness score below a threshold)
- NMS-like procedure (remove pixels which have been assigned to a segment with higher score, accept the non-overlapping portion if sufficient fraction remains)
- Filter our semantic segments (area below a threshold)
- Thing override stuff

Problem: does not solve occlusion, take object relationships into account

e.g.

Tie -> Person

Spoon -> Bowl -> Dinning table

Our method

- Filter out instances (objectness score below a threshold);
- Select the labels that are more likely to be overlapped with other labels according to the frequency;
- For the selected labels, apply the NMS-like procedure within each label (the procedure is valid only when two segments are of the same label);
- For the other labels, apply the NMS-like procedure among them;
- Assign the overlapped pixels according to label prior to solve occlusion;

Our method

- Filter out instances (objectness score below a threshold);
- Select the labels that are more likely to be overlapped with other labels according to the frequency;
- For the selected labels, apply the NMS-like procedure within each label (the procedure is valid only when two segments are of the same label);
- For the other labels, apply the NMS-like procedure among them;
- Assign the overlapped pixels according to label prior to solve occlusion;
- Filter out semantic segments (area below a threshold)
- Filter out semantic pixels (confidence below a threshold)
- Assign a semantic pixel to the second highest prediction label when its probability is above a threshold and the highest prediction is void.
- Thing override stuff

Ablation experiments (on val set)

Method	PQ	SQ	RQ	PQ-t	SQ-t	RQ-t	PQ-s	SQ-s	RQ-s
Baseline	<45.6	-	-	-	-	-	-	-	-
Method 1	45.6	79.9	55.4	57.2	83.5	67.9	28.2	74.4	36.5
Method 2	46.02	79.9	55.9	57.8	83.5	68.7	28.2	74.4	36.5
Method 3	46.06	79.9	55.9	57.9	83.5	68.8	28.2	74.4	36.5

Method 1: Do not apply the procedure on our selected out labels, and apply on the other labels.

Method 2: Apply the procedure within each label for all labels.

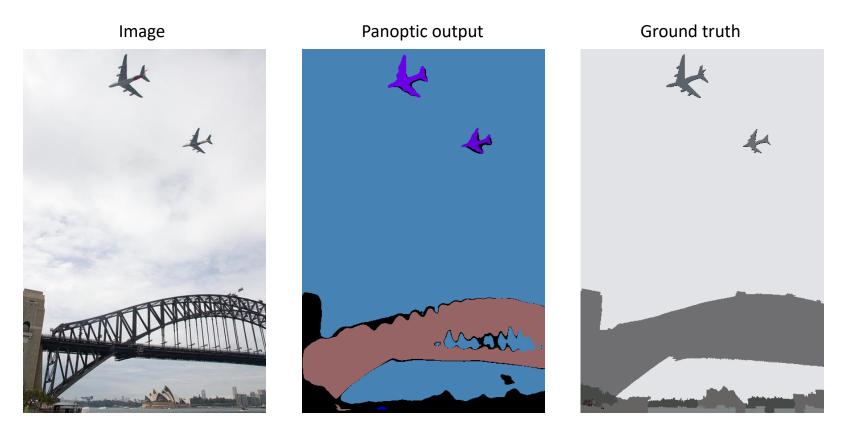
Method 3: Apply the procedure within each label for our selected labels, and apply the procedure among the other labels.

Ablation experiments (on test-dev set)

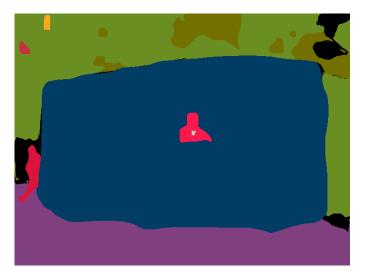
Method	PQ	SQ	RQ
-	44.2	79.5	53.5
+ semantic area threshold	45.6	79.8	55.2
+ semantic area threshold + Method 3	46.3	79.7	56.1
Submitted entry			

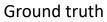
Some examples (from val set)

Panoptic output


Ground truth

Some examples (from val set)





Image

Panoptic output

Future direction

- Reasoning object relationships in an e2e manner to resolve the overlap between instances.
- Semantic and instance segmentation output can be unified into a single framework to resolve the overlap between thing and stuff.

Thank you!

For any question, please contact: ibo@pku.edu.cn