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Basic information of the data

• 20210 images for training,  and 2000 images for validation, 3352 

images for testing

• 150 labels including 35  stuff concepts and 115 discrete objects

Further statistics 

• For each label of training data:

The number of labeled images: 42(escalator) ~ 11664(wall) 

• For each image of training data：

The number of labels: 0 ~ 31 average: 8.17

• Image width and height:

Training data: min size: 96 x 130 max size: 2100 x 2100

Validation data: min size: 200 x 200 max size: 1600 x 1600

Data analysis



4 Data analysis

Challenge

• Diverse and complex scenes

• Contains various objects  in some scenes

• Background clutter, light condition change, 

deformation,…



5 Data analysis

Challenge

• Diverse and complex images

• Similar semantic label

• Field/Earth/Grass, Desk/Table, Mountain/Hill, ……

Grass

Field



6 Data analysis

Challenge

• Diverse and complex images

• Similar semantic label

• Multi-scale information

• Image size

• Stuff and objects in images
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8 Related Work

Deconvolutional network

• Common network structure for pixel-level vision task

• Encoder module: capture context

• Decoder module: recover spatial information

• DeconvNet, SegNet, Light-DCNN

Drawbacks

• Limited learning ability ( VGG )

• Difficulty in training



9 Stacked Deconvolutional Network

The architecture of stacked deconvolutional network

DenseNet

SDN unit 

• Design an efficient shallow deconvolutional network (called as SDN 

unit), stack multiple SDN units one by one with dense connections

• Other designs:

• Intra-unit connections 

• inter-unit connections

• hierarchical supervision

SDN link: https://arxiv.org/pdf/1708.04943.pdf



10 Stacked Deconvolutional Network

The architecture of SDN unit

• Encoder module: two downsampling blocks 

• Enlarge the receptive fields of the Network

• Decoder module: two upsampling blocks 

• Achieve a more refined reconstruction of the feature maps

Convolutional layer

Compression layer

Max-pooling layer

Deconvolutional layer

Classification layer
SDN unita

b
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SDN link: https://arxiv.org/pdf/1708.04943.pdf



11 Stacked Deconvolutional Network

Intra-unit connections 

• Intra-unit connections

• Dense connections in a  downsampling/upsampling block

• Beneficial to the flow of information and gradient propagation 

throughout the network

b 𝑻𝒉𝒆 𝒊𝒕𝒉 𝒅𝒐𝒘𝒏𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈 𝒃𝒍𝒐𝒄𝒌
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Concatenation

Intra-unit
connection 

Inter-unit
connection 

SDN link: https://arxiv.org/pdf/1708.04943.pdf

a SDN unit



12 Stacked Deconvolutional Network

Inter-unit connections 

Concatenation

Intra-unit
connection 

Inter-unit
connection 

• Inter-unit connections 

• Reuse the multi-scale information across different units

• Two types of inter-unit skip connections

• Between any two adjacent SDN units

• The skip connections from the first SDN units to others

DenseNet

SDN unit 

SDN link: https://arxiv.org/pdf/1708.04943.pdf



13 Stacked Deconvolutional Network

Hierarchical supervision

• Hierarchical supervision

• Assist training

• Guarantee the discrimination of the feature maps

SDN link: https://arxiv.org/pdf/1708.04943.pdf

Convolutional layer

Compression layer

Max-pooling layer

Deconvolutional layer

Classification layer



14 Stacked Deconvolutional Network

• Data augmentation

 scale ratio augmentation (s=[0.5 0.75 1 1.25 1.5])

𝑊′ = 𝑊 ⋅ 𝑠 ; 𝐻′= 𝐻 ⋅ 𝑠
 aspect ratio augmentation (a=[0.85 1 1.15])

𝑊′ = 𝑊/𝑎 ;𝐻′= 𝐻 ⋅ 𝑎
 resize and random crop 

• Large cropsize

• Proper learning rate 2.5e-4 and iteration number 100K

• Resize the image and testing with sliding window crop

• Multi scale test

Testing scheme:

Some Training settings:



15 Stacked Deconvolutional Network

SDN_M2

SDN_M2 result by mean IoU / pixel accuracy

• Val Data: 44.57/81.22

DenseNet
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17 Ensemble modeling

Deeplabv3+

• Some improvements on deeplabv3

ResNet

101

ASPP+

conv

Global 

pooling+conv+si

gmod

scale

Upsampling

module scale

1/8
1/8

1/4

1X1X150

• Global pooling

• Upsampling module: similar to RefineNet

Deeplabv3+ result  Val Data: 44.25/81.02

1/8



18 Ensemble modeling

• SDN: 44.57/81.22

• Deeplabv3+: 44.25/81.02

• ResNet38: 44.07/81.07

By averaging the results of these models, 

the score increased to 46.59/82.23

Deeplabv3+ and ResNet38 adopt training settings and test scheme as the same as

SDN, and initialize networks with the models pretrained on ImageNet.



19 Ensemble modeling

Some scene parsing results
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Some scene parsing results
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Some scene parsing results
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Some scene parsing results
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Thanks

Any questions, please contact the author of the work

Email:  jliu@nlpr.ia.ac.cn
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