In Transform Gerage Journal Language Processing Agort Google Control Free Control C

Data Management

erception

Networking

Alireza Fathi (alirezafathi@google.com)

Nori Kanazawa, Kai Yang, George Papandreou, Tyler Zhu, Jonathan Huang, Vivek Rathod, Chen Sun, Kevin Murphy, et al.

Google: Mobile First to AI First

Beyond image classification...

Source: http://karpathy.github.io/2012/10/22/state-of-computer-vision/

What we need: boxes, segments, human pose

Based on a figure from Jia Deng

And also: attributes, relations, 3-d, ...

This Talk

- Semantic Stuff Segmentation
- Object Instance Segmentation
- Human Pose Estimation

Team Members

Kai Yang

Alireza Fathi Kevin Murphy

Masternet (DenseLab)

A Model based on DeepLab for Semantic Segmentation

ICLR'15, CVPR'16, PAMI'17.

Tricks for improving results

- Feature extractor
 - Inception resnet gives around 3% improvement in comparison to Resnet101.
- Initial checkpoint (Not used for the competition)
 - Starting from a COCO semantic segmentation checkpoint gives a 2-3% boost in comparison to starting from an ImageNet classification checkpoint.
- Ensembling
 - We get around 3-4% improvement in performance by ensembling 5 models.
- Batch size
 - Larger batch size and smaller crop size seems to be better than smaller batch size but larger crop size. We use a batch size of 72.
- Balancing classes
 - We get around 1% improvement by balancing the loss among different classes.
- Moving average? Focal loss? New network architectures?

Example results on ADE20K

Image

Groundtruth

Example results on ADE20K

Image

Groundtruth

Example results on ADE20K

Image

Groundtruth

Example results on Coco Stuff

Image

Groundtruth

Example results on Coco Stuff

Image

Groundtruth

Example results on Coco Stuff

Image

Groundtruth

Boundary Detection

Depth/Surface Normal Prediction

Groundtruth

Depth/Surface Normal Prediction

Depth/Surface Normal Prediction

Groundtruth

This Talk

- Semantic Stuff Segmentation
- Object Instance Segmentation
- Human Pose Estimation

Team Members

Nori

Alireza Fathi

Kevin Kanazawa Murphy

Google

Available open source: pre-trained models or train your own on GCloud

This repository Search	Pull requests Issues	Marketplace Gist	↓ +• ∰
tensorflow / models		⊙ Unwatch + 1,311 ★ U	Unstar 17,218 ¥ Fork 6,704
↔ Code ① Issues 196 ì	Pull requests 29 III Projects 0	🕮 Wiki 🛛 Insights 🗸	
Branch: master - models / obje	ct_detection /	Create new file	Upload files Find file History
derekjchow committed with sgua	da Make Record scripts python3 compatibl	e. (#1614)	Latest commit 057203e 2 hours ago
anchor_generators	Add Tensorflow Object Detection API.	(#1561)	6 days ago
box_coders	Add Tensorflow Object Detection API.	(#1561)	6 days ago
builders	Fix compatibility for model_builder_tes	st.py (#1571)	4 days ago
core	Add Tensorflow Object Detection API.	(#1561)	6 days ago
data	Add Tensorflow Object Detection API.	(#1561)	6 days ago
data_decoders	Add Tensorflow Object Detection API.	(#1561)	6 days ago
g3doc	Fix ML Engine Dashboard link (#1599)		a day ago
matchers	Add Tensorflow Object Detection API.	(#1561)	6 days ago
meta_architectures	Add Tensorflow Object Detection API.	(#1561)	6 days ago
models	Use spatial_squeeze=False for ResNe	t feature extractors. (#1586)	4 days ago
protos	Add Tensorflow Object Detection API.	(#1561)	6 days ago
samples	Reduce batchsize from 32->24 for SS	D configs.	5 days ago
test_images	Add Tensorflow Object Detection API.	(#1561)	6 days ago
utils	Change visualizer font and jupyter not	tebook line thickness (#1589)	4 days ago
BUILD	Add Tensorflow Object Detection API.	(#1561)	6 days ago
CONTRIBUTING.md	Add Tensorflow Object Detection API.	(#1561)	6 days ago
README.md	Clean up documentation. (#1563)		5 days ago
initpy	Add Tensorflow Object Detection API.	(#1561)	6 days ago
create_pascal_tf_record.py	Make Record scripts python3 compati	ible. (#1614)	2 hours ago
create_pascal_tf_record_test.py	Add Tensorflow Object Detection API.	. (#1561)	6 days ago
create_pet_tf_record.py	Make Record scripts python3 compati	ible. (#1614)	2 hours ago
eval.py	Add Tensorflow Object Detection API.	(#1561)	6 days ago
eval_util.py	Add Tensorflow Object Detection API.	(#1561)	6 days ago
evaluator.py	Add Tensorflow Object Detection API.	(#1561)	6 days ago
avport informan graph by	Add Tensorflow Object Detection AD	(#1501)	6 dava age

I README.md

Tensorflow Object Detection API

Creating accurate machine learning models capable of localizing and identifying multiple objects in a single image remains a core challenge in computer vision. The TensorFlow Object Detection API is an open source framework built on top of TensorFlow that makes it easy to construct, train and deploy object detection models. At Google we've certainly found this codebase to be useful for our computer vision needs, and we hope that you will as well.

Contributions to the codebase are welcome and we would love to hear back from you if you find this API useful. Finally if you use the Tensorflow Object Detection API for a research publication, please consider citing:

"Speed/accuracy trade-offs for modern convolutional object detectors." Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S, Murphy K, CVPR 2017

[link][bibtex]

TensorFlow Object Detection API

Implemental the detectors

Meta-architecture	SSD, Faster R-CNN, R-FCN
Feature Extractor	Mobilenet, VGG, Inception V2, Inception V3, Resnet-50, Resnet-101, Resnet-152, Inception Resnet v2
Learning schedule	Manually Stepped, Exponential Decay, etc
Location Loss function	L2, L1, Huber, IOU
Classification Loss function	SigmoidCrossEntropy, SoftmaxCrossEntropy

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., ... & Murphy, K. Speed/accuracy trade-offs for modern convolutional object detectors. CVPR 2017

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., ... & Murphy, K. Speed/accuracy trade-offs for modern convolutional object detectors. CVPR 2017

Google

Mask R-CNN: Segmentation Head

Example results from ADE20K

Example results from MS COCO

Example results from MS COCO

Example results from MS COCO

Object Instance Segmentation

Google

Coming soon on GitHub under tensorflow/models

Instance Segmentation API

	Search this site	Search
Home In Depth Overview ~ Contributors References FAQ		
What is Instance Segmentation? Page Info		
Updated 2017-08-14	View source	
Instance segmentation is the problem of identifying individual instances of objects and their categories (such as person and car) in an image. It differs from object detection in that the output is a mask representing the shape of each object rather than just a hounding how. It differs from semantic segmentation in that our goal is not		

just to classify each pixel with a label (or as background), but also to distinguish individual instances of the

same class.

Tricks for improving results

- Input image size
 - 600 to 800 gives around 1.5-2% improvement on MSCOCO
- Network stride
 - Changing inception resnet from stride 16 to stride 8 gives around 1% improvement
- Using intermediate layers
 - Intermediate layers for mask prediction part of the network gives around 0.8% improvement
- Weight of the mask prediction loss
 - I found the best balance given the current architecture is to give weight 4.0 to mask loss
- Mask size
 - Changing mask prediction size from 16 to 32 gives around 0.15% improvement
- Number of convolutions in mask prediction head
 - Increasing number of conv2d layers from 1 to 3 improves performance by 0.3%

Boundary and mask prediction

• Gives around 0.5% improvement

Boundary Prediction

Mask Prediction
Boundary and mask prediction

Boundary Prediction

Mask Prediction

Boundary and mask prediction

Boundary Prediction

Mask Prediction

Issues in Box-based Mask Prediction 1/3

• Sometimes there are multiple instances of the same object in a box.

Issues in Box-based Mask Prediction 1/3

• Sometimes there are multiple instances of the same object in a box.

Issues in Box-based Mask Prediction 2/3

• Some objects are thin and appear diagonal in image. Barely occupy 10% of the given box!

Issues in Box-based Mask Prediction 2/3

• Some objects are thin and appear diagonal in image. Barely occupy 10% of the given box!

Issues in Box-based Mask Prediction 3/3

- Some things are objects, and some are stuff such as grass, sky, etc. Not meaningful to put a box around stuff.
- Sometimes objects are occluded.

WIP: Bottom-up (Box-Free) Instance Segmentation

Fathi, Wojna, Rathod, Wang, Song, Guadarrama, Murphy, Semantic Instance Segmentation via Deep Metric Learning, arXiv 1703.10277

Projection of Embedding Vectors to RGB Space

Qualitative Results

This Talk

- Semantic Stuff Segmentation
- Object Instance Segmentation
- Human Pose Estimation

Team Members

Tyler Zhu

Nori Kanazawa

Alex Toshev

Jonathan Tompson

Chris Bregler

Hartwig Adam

Murphy

Kevin

Top-down (2-stage) pipeline

"<u>Towards Accurate Multi-person Pose Estimation in the Wild</u>", George Papandreou, Tyler Zhu, Nori Kanazawa, Alexander Toshev, Jonathan Tompson, Chris Bregler, Kevin Murphy. CVPR'17.

Person Detection

- 1. Uses our open source object detection system*, which won COCO-Det 2016.
- 2. Faster-RCNN, with ResNet-101 feature extractor, trained on person vs non-person (COCO data).
- 3. Single model (no ensemble), single-crop eval.
- 4. Output stride=8 via atrous convolution.
- 5. Image resized to 800 min side or 1200 max side.

Box AP for person (testdev): 0.487

Gooale

*Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., ... & Murphy, K. Speed/accuracy trade-offs for modern convolutional object detectors. CVPR 2017

Heatmap Output

- Heatmap field for each keypoint
 - 17 channels (1 within a disk around each keypoint, 0 outside)
 - Sigmoid cross entropy loss
- Intermediate and final CNN layers

Target

Net-Layer52

Net-Layer101

photo credit: Andrew Taylor

Offset Output

- Offset field towards the center of the disk
 - 34 channels for x- and y- offsets
 - Huber loss, only active within disks
- Intermediate and final CNN layers

Target

 $\mathbf{0}$

 \mathbf{O}

Fusing Heatmaps and Offsets via Hough Voting

CNN

Heatmaps G_i

Offsets F_i

Heatmap Bilinear

$$P_i(x_i) = \sum_{x} G_i(x) \cdot K(x_i - x - F_i(x))$$

<u>Algo</u>: Offset-guided Hough voting For each point in the heatmap:

(1) Transfer its mass by the corresponding offset.

(2) Accumulate into one 2-D Hough array per part.

Hough arrays P_i

1 1

Final Pose Prediction: Keypoint Position and Score

Our Progress on COCO-Keypoints Benchmark

- Submission to COCO-2016 keypoints
 - AP: 0.605 (COCO+internal*, ranked #2)
- Improvements¹ for CVPR 2017 paper
 - AP: 0.649 (COCO)
 - AP: 0.685 (COCO+internal)
- Improvements² for COCO-2017 competition:
 - AP: 0.669 (COCO)
 - AP: 0.710 (COCO+internal, ranked #4)

*Internal dataset (400k people, 130k images).

¹Exponential moving average of parameters, better model and system tuning and hyperparameter settings.

²Intermediate supervision for all heatmap+offsets+displacements, resnet-152, better feature alignment, longer training without decreasing learning rate.

All AP numbers use testdev

COCO Keypoints Results (testdev)

	АР	AP@.5	AP@.75	AP (M)	AP (L)	AR	AR@.5	AR@.75	AR (M)	AR (L)
Ours COCO-2016 #2 (COCO+internal)	0.605	0.822	0.662	0.576	0.666	0.662	0.866	0.714	0.619	0.722
CMU-Pose COCO-2016 #1 paper	0.618	0.849	0.675	0.571	0.682	0.665	0.872	0.718	0.606	0.746
Mask-RCNN paper	0.631	0.873	0.687	0.578	0.714	0.697	0.916	0.749	0.637	0.778
Associative Embedding	0.655	0.868	0.723	0.606	0.726	0.702	0.895	0.760	0.646	0.781
Ours (COCO-only)	0.669	0.864	0.736	0.640	0.720	0.716	0.892	0.776	0.661	0.791
Ours (COCO+internal)	0.696	0.872	0.766	0.670	0.742	0.742	0.903	0.804	0.692	0.811
Ours (COCO+internal) ResNet-152	0.710	0.879	0.777	0.690	0.752	0.758	0.912	0.819	0.714	0.820

WIP*: Bottom-up part detection + grouping

*G. Papandreou et al, CVPR'18 Google

Each part predicts offset to other parts. Greedy decoding.

Top-down vs bottom-up

Feature	Top-Down (box based)	Bottom-Up (grouping based)		
Speed	Slower (time ∝ #people)	Faster (time independent of #people)		
Accuracy	Higher (zoom in on image)	Lower on small instances		
Flexibility/ modularity	Higher (cf MaskRCNN)	Lower		
Model size/ complexity	Larger (more code, params)	Smaller		

Multi-Person Pose Estimation Demo

Google

Thanks, acy, Mobile Systems

SPEAKER Alireza Fathi

Special thanks to

Distributed Systems

Nori Kanazawa, Kai Yang, Kevin Murphy, Derek Chow, Ian Fischer, Sergio Guadarrama, Jonathan Huang, Anoop Korattikara, Kevin Murphy, Vivek Rathod, Yang Song, Chen Sun, Matt Tang, Zbigniew Wojna, Menglong Zhu, George Papandreou, Rahul Sukthankar.

Example results from MS COCO

Example results from MS COCO

Example results from MS COCO

Towards Box-Free (Bottom-up) Instance Segmentation

Fathi, Wojna, Rathod, Wang, Song, Guadarrama, Murphy, Semantic Instance Segmentation via Deep Metric Learning, arXiv 1703.10277

• K Samples of N-pair loss.

• K Samples of N-pair loss.

• K Samples of N-pair loss.

- Randomly Pick an embedding vector from class c_i. Lets call it e_1.
- Randomly pick one embedding vector from each class c_i, c_j,
- Compute the similarity between e_1 and the other n embedding vectors.
- We like the similarity between e_1 and the vector belonging to class c_i be high, and the similarity with embedding vectors belonging to other classes be low.

- Randomly Pick an embedding vector from class c_i. Lets call it e_1.
- Randomly pick one embedding vector from each class c_i, c_j,

. . . .

- Compute the similarity between e_1 and the other n embedding vectors.
- We like the similarity between e_1 and the vector belonging to class c_i be high, and the similarity with embedding vectors belonging to other classes be low.

Projection of Embedding Vectors to RGB Space

Qualitative Results

